Inferring the effective reproductive number from deterministic and semi-deterministic compartmental models using incidence and mobility data

PLoS Comput Biol. 2022 Jun 27;18(6):e1010206. doi: 10.1371/journal.pcbi.1010206. eCollection 2022 Jun.

Abstract

The effective reproduction number (ℜt) is a theoretical indicator of the course of an infectious disease that allows policymakers to evaluate whether current or previous control efforts have been successful or whether additional interventions are necessary. This metric, however, cannot be directly observed and must be inferred from available data. One approach to obtaining such estimates is fitting compartmental models to incidence data. We can envision these dynamic models as the ensemble of structures that describe the disease's natural history and individuals' behavioural patterns. In the context of the response to the COVID-19 pandemic, the assumption of a constant transmission rate is rendered unrealistic, and it is critical to identify a mathematical formulation that accounts for changes in contact patterns. In this work, we leverage existing approaches to propose three complementary formulations that yield similar estimates for ℜt based on data from Ireland's first COVID-19 wave. We describe these Data Generating Processes (DGP) in terms of State-Space models. Two (DGP1 and DGP2) correspond to stochastic process models whose transmission rate is modelled as Brownian motion processes (Geometric and Cox-Ingersoll-Ross). These DGPs share a measurement model that accounts for incidence and transmission rates, where mobility data is assumed as a proxy of the transmission rate. We perform inference on these structures using Iterated Filtering and the Particle Filter. The final DGP (DGP3) is built from a pool of deterministic models that describe the transmission rate as information delays. We calibrate this pool of models to incidence reports using Hamiltonian Monte Carlo. By following this complementary approach, we assess the tradeoffs associated with each formulation and reflect on the benefits/risks of incorporating proxy data into the inference process. We anticipate this work will help evaluate the implications of choosing a particular formulation for the dynamics and observation of the time-varying transmission rate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basic Reproduction Number
  • COVID-19* / epidemiology
  • Epidemiological Models
  • Humans
  • Incidence
  • Pandemics* / prevention & control

Grants and funding

The project has received funding –through the School of Medicine, National University of Ireland Galway– from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 883285. The material presented and views expressed here are the responsibility of the author(s) only. The EU Commission takes no responsibility for any use made of the information set out. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.