Water-Resistant Drug-Polymer Interaction Contributes to the Formation of Nano-Species during the Dissolution of Felodipine Amorphous Solid Dispersions

Mol Pharm. 2022 Aug 1;19(8):2888-2899. doi: 10.1021/acs.molpharmaceut.2c00250. Epub 2022 Jun 27.

Abstract

Drug-polymer interactions are of great importance in amorphous solid dispersion (ASD) formulation for both dissolution performance and physical stability considerations. In this work, three felodipine ASD systems with drug loading ranging from 5 to 20% were prepared using PVP, PVP-VA, or HPMC-AS as the polymer matrix. The amorphization and homogeneity were confirmed by differential scanning calorimetry and powder X-ray diffraction. The intrinsic dissolution behavior of these ASDs was studied in 0.05 M HCl and phosphate-buffered saline (PBS) (pH 6.5). In 0.05 M HCl, PVP-VA ASDs with low drug loading (<15%) showed rapid dissolution accompanied with nano-species generation, while in the PVP system, rapid dissolution and nano-species generation were observed only when drug loading was less than 10%, and HPMC-AS ASDs always released slowly with no nano-species formation. In PBS, PVP-VA ASDs with drug loading less than 10% showed rapid dissolution accompanied with nano-species generation, while for PVP ASDs, rapid dissolution and nano-species generation were observed only when drug loading was 5%. However, 20% drug loading HPMC-AS ASDs exhibited rapid dissolution of felodipine and nano-species generation. When the drug loading was above the transition point of PVP-VA ASDs and PVP ASDs, the release rate was significantly lowered, and no nano-species was generated. To understand this phenomenon, drug-polymer interactions were studied using the melting point depression method and the Flory-Huggins model fitting. The Flory-Huggins interaction parameters (χ) for felodipine/HPMC-AS, felodipine/PVP, and felodipine/PVP-VA were determined to be 0.62 ± 0.07, -0.55 ± 0.20, and -1.02 ± 0.21, respectively, indicating the existence of the strongest attractive molecular interaction between felodipine and PVP-VA, followed by felodipine/PVP, but not in felodipine/HPMC-AS. Furthermore, dynamic vapor sorption further revealed that the molecular interactions between felodipine and PVP or PVP-VA were resistant to water. We concluded that water-resistant drug-polymer interactions in felodipine/polymer systems were responsible for the formation of nano-species, which further facilitated the rapid initial drug dissolution.

Keywords: amorphous solid dispersion; drug−polymer interaction; intrinsic dissolution; nano-species; water resistant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization / methods
  • Felodipine* / chemistry
  • Polymers* / chemistry
  • Solubility
  • Water / chemistry

Substances

  • Polymers
  • Water
  • Felodipine