Elemental Two-Dimensional Materials for Li/Na-Ion Battery Anode Applications

Chem Rec. 2022 Oct;22(10):e202200123. doi: 10.1002/tcr.202200123. Epub 2022 Jun 27.

Abstract

Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na-ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na-ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.

Keywords: 2D materials; graphene; lithium-ion batteries; single element; sodium-ion batteries.

Publication types

  • Review