New Analysis Method for Adsorption in Gas (H2, CO)-Solid (SnO2) Systems Based on Gas Sensing

ACS Omega. 2022 Jun 9;7(24):21262-21266. doi: 10.1021/acsomega.2c02405. eCollection 2022 Jun 21.

Abstract

The chemisorption phenomenon is widely used in the explanation of catalysis, gas-solid reactions, and gas sensing mechanisms. Generally, some properties of adsorbents, such as adsorption sites and dispersion, can be predicted by traditional methods through the variation of the chemisorption capacity with the temperature, pressure, and gas-solid interaction potential. However, these methods could not capture the information of the interaction between adsorbents, the adsorption rate, and the competitive adsorption relationship between adsorbents. In this paper, metal oxide semiconductors (MOSs) are employed to study the adsorption behavior. The gas sensing responses (GSRs) of MOSs caused by the gas adsorption process are measured as a new method to capture some adsorption behaviors, which are impossible for the traditional methods to obtain. The following adsorption behaviors characterized by this new method are presented for the first time: (1) distinguishing the adsorption type using an example of two reducing gases: the adsorption type of the two gases is single-molecular layer adsorption in this work; (2) detecting the interaction between different gases: this will be a promising method to provide original characterization data in the fields of gas-solid reaction mechanisms and heterogeneous catalysis; and (3) measuring the adsorption rate based on the GSR.