Autologous Fibrin Sealants Have Comparable Graft Fixation to an Allogeneic Sealant in a Biomechanical Cadaveric Model of Chondral Defect Repair

Arthrosc Sports Med Rehabil. 2022 Apr 15;4(3):e1075-e1082. doi: 10.1016/j.asmr.2022.03.003. eCollection 2022 Jun.

Abstract

Purpose: The purpose of this study is to assess the integrity of chondral defect repairs filled with a cartilage allograft and sealed with either allogeneic fibrin sealant or autologous fibrin sealants created with platelet-rich plasma (PRP) or platelet-poor plasma (PPP) in a cadaver model.

Methods: Twenty-millimeter medial femoral condyle (MFC) chondral defects were created in five human cadaveric knees. The defects were filled with particulated cartilage allograft hydrated with PRP from human donors until slightly recessed. Sealants were applied until flush with the articular surface using PRP and autologous thrombin serum, PPP and autologous thrombin serum, or commercial allogeneic sealant. The MFC defects were cycled using a multiaxial testing system to simulate continuous passive motion undergone during rehabilitation. After testing, the repairs were assessed for integrity by quantitatively comparing defect exposure and qualitatively assessing sealant delamination.

Results: The mean defect exposures were 4.20% ± 5.02% for the PRP group, 4.60% ± 5.18% for the PPP group, and 1.80% ± 2.95% for the allogeneic sealant group. No significant differences were observed between groups (P = .227), and each group had significantly less defect exposure when compared to the critical clinically relevant value assigned to be 30% (P = <.001 for all). No complete sealant delamination was observed, although the allogeneic sealant delaminated with a higher magnitude than did the autologous sealants.

Conclusions: The PRP and PPP sealants were comparable to the allogeneic sealant for graft fixation when used in conjunction with an underlying PRP-hydrated particulated cartilage allograft. The autologous sealants had better delamination resistance than the allogeneic sealant.

Clinical relevance: The time-zero model is critical in elucidating the retention properties of fibrin and allogenic sealants after cartilage repair and before healing processes help stabilize the repair.