Biological Therapy of Severe Asthma with Dupilumab, a Dual Receptor Antagonist of Interleukins 4 and 13

Vaccines (Basel). 2022 Jun 19;10(6):974. doi: 10.3390/vaccines10060974.

Abstract

Interleukin-4 (IL-4) and interleukin-13 (IL-13) are key cytokines involved in the pathophysiology of both immune-inflammatory and structural changes underlying type 2 asthma. IL-4 plays a pivotal role in Th2 cell polarization, immunoglobulin E (IgE) synthesis and eosinophil recruitment into the airways. IL-13 synergizes with IL-4 in inducing IgE production and also promotes nitric oxide (NO) synthesis, eosinophil chemotaxis, bronchial hyperresponsiveness and mucus secretion, as well as the proliferation of airway resident cells such as fibroblasts and smooth muscle cells. The biological effects of IL-4 and IL-13 are mediated by complex signaling mechanisms activated by receptor dimerization triggered by cytokine binding to the α-subunit of the IL-4 receptor (IL-4Rα). The fully human IgG4 monoclonal antibody dupilumab binds to IL-4Rα, thereby preventing its interactions with both IL-4 and IL-13. This mechanism of action makes it possible for dupilumab to effectively inhibit type 2 inflammation, thus significantly reducing the exacerbation of severe asthma, the consumption of oral corticosteroids (OCS) and the levels of fractional exhaled NO (FeNO). Dupilumab has been approved not only for the add-on therapy of severe asthma, but also for the biological treatment of atopic dermatitis and nasal polyposis.

Keywords: IL-13; IL-4; dupilumab; severe asthma.

Publication types

  • Review

Grants and funding

This research received no external funding.