Occupational Safety Analysis for COVID-Instigated Repurposed Manufacturing Lines: Use of Nanomaterials in Injection Moulding

Polymers (Basel). 2022 Jun 14;14(12):2418. doi: 10.3390/polym14122418.

Abstract

The COVID-19 pandemic instigated massive production of critical medical supplies and personal protective equipment. Injection moulding (IM) is considered the most prominent thermoplastic part manufacturing technique, offering the use of a large variety of feedstocks and rapid production capacity. Within the context of the European Commission-funded imPURE project, the benefits of IM have been exploited in repurposed IM lines to accommodate the use of nanocomposites and introduce the unique properties of nanomaterials. However, these amendments in the manufacturing lines highlighted the need for targeted and thorough occupational risk analysis due to the potential exposure of workers to airborne nanomaterials and fumes, as well as the introduction of additional occupational hazards. In this work, a safety-oriented failure mode and effects analysis (FMEA) was implemented to evaluate the main hazards in repurposed IM lines using acrylonitrile butadiene styrene (ABS) matrix and silver nanoparticles (AgNPs) as additives. Twenty-eight failure modes were identified, with the upper quartile including the seven failure modes presenting the highest risk priority numbers (RPN), signifying a need for immediate control action. Additionally, a nanosafety control-banding tool allowed hazard classification and the identification of control actions required for mitigation of occupation risks due to the released airborne silver nanoparticles.

Keywords: failure mode and effect analysis; injection moulding; nanocomposites; nanomaterials; nanosafety; repurposing; risk analysis.