Investigation of Recycled and Coextruded PLA Filament for Additive Manufacturing

Polymers (Basel). 2022 Jun 14;14(12):2407. doi: 10.3390/polym14122407.

Abstract

Polylactide acid (PLA) is one of the most used plastics in extrusion-based additive manufacturing (AM). Although it is bio-based and in theory biodegradable, its recyclability for fused filament fabrication (FFF) is limited due to material degradation. To better understand the material's recyclability, blends with different contents of recycled PLA (rPLA) are investigated alongside a coextruded filament comprised of a core layer with high rPLA content and a skin layer from virgin PLA. The goal was to determine whether this coextrusion approach is more efficient than blending rPLA with virgin PLA. Different filaments were extruded and subsequently used to manufacture samples using FFF. While the strength of the individual strands did not decrease significantly, layer adhesion decreased by up to 67%. The coextruded filament was found to be more brittle than its monoextruded counterparts. Additionally, no continuous weld line could be formed between the layers of coextruded material, leading to a decreased tensile strength. However, the coextruded filament proved to be able to save on master batch and colorants, as the outer layer of the filament has the most impact on the part's coloring. Therefore, switching to a coextruded filament could provide economical savings on master batch material.

Keywords: additive manufacturing; coextrusion; filament; polylactide acid; recycling.