Development of Nafamostat Mesylate Immediate-Release Tablet by Drug Repositioning Using Quality-by-Design Approach

Pharmaceutics. 2022 Jun 8;14(6):1219. doi: 10.3390/pharmaceutics14061219.

Abstract

We aimed to develop nafamostat mesylate immediate-release tablets for the treatment of COVID-19 through drug repositioning studies of nafamostat mesylate injection. Nafamostat mesylate is a serine protease inhibitor known to inhibit the activity of the transmembrane protease, serine 2 enzyme that affects the penetration of the COVID-19 virus, thereby preventing the binding of the angiotensin-converting enzyme 2 receptor in vivo and the spike protein of the COVID-19 virus. The formulation was selected through a stability study after manufacturing by a wet granulation process and a direct tableting process to develop a stable nafamostat mesylate immediate-release tablet. Formulation issues for the selected processes were addressed using the design of experiments and quality-by-design approaches. The dissolution rate of the developed tablet was confirmed to be >90% within 30 min in the four major dissolutions, except in the pH 6.8 dissolution medium. Additionally, an in vivo pharmacokinetic study was performed in monkeys, and the pharmacokinetic profiles of nafamostat injections, oral solutions, and tablets were compared. The half-life during oral administration was confirmed to be significantly longer than the reported literature value of 8 min, and the bioavailability of the tablet was approximately 25% higher than that of the oral solution.

Keywords: COVID-19; drug repositioning; immediate-release tablets; nafamostat mesylate; pharmacokinetic study; quality-by-design approach.