Predicting the Water Sorption in ASDs

Pharmaceutics. 2022 May 31;14(6):1181. doi: 10.3390/pharmaceutics14061181.

Abstract

Water decreases the stability of amorphous solid dispersions (ASDs) and water sorption is, therefore, unwanted during ASD storage. This work suggests a methodology to predict the water-sorption isotherms and the water-sorption kinetics in amorphous pharmaceutical formulations like ASDs. We verified the validity of the proposed methodology by measuring and predicting the water-sorption curves in ASD films of polyvinylpyrrolidone-based polymers and of indomethacin. This way, the extent and the rate of water sorption in ASDs were predicted for drug loads of 0.2 and 0.5 as well as in the humidity range from 0 to 0.9 RH at 25 °C. The water-sorption isotherms and the water-sorption kinetics in the ASDs were predicted only based on the water-sorption isotherms and water-sorption kinetics in the neat polymer on the one hand and in the neat active pharmaceutical ingredient (API) on the other hand. The accurate prediction of water-sorption isotherms was ensured by combining the Perturbed-Chain Statistical Association Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP) approach. Water-sorption kinetics were predicted using Maxwell-Stefan diffusion coefficients of water in the ASDs.

Keywords: ASDs; NET-GP; PC-SAFT; water-sorption isotherms; water-sorption kinetics.

Grants and funding

This research received no external funding.