Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections

Pathogens. 2022 Jun 8;11(6):663. doi: 10.3390/pathogens11060663.

Abstract

Infections caused by bacteria have a major impact on public health-related morbidity and mortality. Despite major advances in the prevention and treatment of bacterial infections, the latter continue to represent a significant economic and social burden worldwide. The WHO compiled a list of six highly virulent multidrug-resistant bacteria named ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) responsible for life-threatening diseases. Taken together with Clostridioides difficile, Escherichia coli, Campylobacter spp., (C. jejuni and C. coli), Legionella spp., Salmonella spp., and Neisseria gonorrhoeae, all of these microorganisms are the leading causes of nosocomial infections. The rapid and accurate detection of these pathogens is not only important for the early initiation of appropriate antibiotic therapy, but also for resolving outbreaks and minimizing subsequent antimicrobial resistance. The need for ever-improving molecular diagnostic techniques is also of fundamental importance for improving epidemiological surveillance of bacterial infections. In this review, we aim to discuss the recent advances on the use of molecular techniques based on genomic and proteomic approaches for the diagnosis of bacterial infections. The advantages and limitations of each of the techniques considered are also discussed.

Keywords: ESKAPE; antimicrobial resistance; genotyping methods; multidrug-resistant bacteria.

Publication types

  • Review

Grants and funding

This research received no external funding.