Quantum Transport of Dirac Fermions in HgTe Gapless Quantum Wells

Nanomaterials (Basel). 2022 Jun 14;12(12):2047. doi: 10.3390/nano12122047.

Abstract

We study the transport properties of HgTe quantum wells with critical well thickness, where the band gap is closed and the low energy spectrum is described by a single Dirac cone. In this work, we examined both macroscopic and micron-sized (mesoscopic) samples. In micron-sized samples, we observe a magnetic-field-induced quantized resistance (~h/2e) at Landau filling factor ν=0, corresponding to the formation of helical edge states centered at the charge neutrality point (CNP). In macroscopic samples, the resistance near a zero Landau level (LL) reveals strong oscillations, which we attribute to scattering between the edge ν=0 state and bulk ν≠0 hole LL. We provide a model taking an empirical approach to construct a LL diagram based on a reservoir scenario, formed by the heavy holes.

Keywords: HgTe quantum well; Landau levels; quantum transport.