Hrip1 Induces Systemic Resistance against Bean Aphid (Megoura japonica Matsumura) in Common Beans (Phaseolus vulgaris L.)

Microorganisms. 2022 May 24;10(6):1080. doi: 10.3390/microorganisms10061080.

Abstract

The emerging elicitor protein Hrip1 was evaluated for sublethal effects and biocontrol potential in the common bean Phaseolus vulgaris. In Megoura japonica Matsumura, purified elicitor protein Hrip1 was investigated for impacts on endurance, life expectancy, juvenile expansion, fully grown procreative performance, and pathogen-pest interface. The multi-acting entomopathogenic effects of the active compounds of Alternaria tenuissima active on Hrip1 in common bean (Phaseolus vulgaris L.) plants were also investigated. Megoura japonica population expansion was reduced by Hrip1 treatments (second and third generations). In a host selection test, control plants colonized quicker than Hrip1-treated P. vulgaris plants. Hrip1 influenced the longevity, development, and fertility of insects. Hrip1-elicitor protein concentrations aided M. japonica nymph development. Similarly, seedlings treated with Hrip1 generated fewer offspring than seedlings not treated with Hrip1. Hrip1 altered plant height and leaf surface structure, reducing M. japonica reproduction and colonization. Hrip1-treated P. vulgaris seedlings exhibited somewhat increased amounts of jasmonic acid, salicylic acid, and ethylene (ET). The integrated management of insect pests and biocontrol with Hrip1 in the agroecosystem appears to be suitable against M. japonica based on these findings.

Keywords: Alternaria tenuissima; Megoura japonica; Phaseolus vulgaris; expressions of defense-related genes; fecundity; nymphal instars.