Structural Design and Analysis of Hybrid Drive Multi-Degree-of-Freedom Motor

Micromachines (Basel). 2022 Jun 16;13(6):955. doi: 10.3390/mi13060955.

Abstract

Piezoelectric-driven multi-degree-of-freedom motors can turn off self-lock, withstand high and low temperatures, are small in size and compact in structure, and can easily achieve miniaturization. However, they have a short life cycle and limited applications. In addition, high-intensity operation will result in a decrease in their stability. Electromagnetic-driven multi-degree-of-freedom motors, on the other hand, are simple and highly integrated, but they are large in volume and lack positioning accuracy. Therefore, combining the two drive modes can achieve complementary advantages, such as improving the motor's torque, accuracy, and output performance. Firstly, the structure of the hybrid drive motor is introduced and its working principle is analyzed. The motor can achieve single and hybrid drive control, which is beneficial to improving the performance of the motor. Secondly, the influence of magnetization mode, permanent magnet thickness, slot torque, and stator mode on the motor is analyzed. Thirdly, the structure of the motor is determined to be 6 poles and 15 slots, the thickness of the permanent magnet is 12 mm, and the radial magnetization mode is used. Finally, the mixed torque and speed of the motor in the multi-degree-of-freedom direction are tested by experiments, which indirectly verifies the rationality of the structure design.

Keywords: electromagnetism; hybrid drive; piezoelectricity; torque.