Fabrication of High Precision Silicon Spherical Microlens Arrays by Hot Embossing Process

Micromachines (Basel). 2022 Jun 6;13(6):899. doi: 10.3390/mi13060899.

Abstract

In this paper, a high-precision, low-cost, batch processing nanoimprint method is proposed to process a spherical microlens array (MLA). The nanoimprint mold with high surface precision and low surface roughness was fabricated by single-point diamond turning. The anti-sticking treatment of the mold was carried out by perfluorooctyl phosphoric acid (PFOPA) liquid deposition. Through the orthogonal experiment of hot embossing with the treated mold and subsequent inductively coupled plasma (ICP) etching, the microstructure of MLA was transferred to the silicon substrate, with a root mean square error of 17.7 nm and a roughness of 12.1 nm Sa. The average fitted radius of the microlens array units is 406.145 µm, which is 1.54% different from the design radius.

Keywords: ICP etching; hot embossing; mold anti-sticking; silicon spherical microlens array.