A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks

Foods. 2022 Jun 14;11(12):1734. doi: 10.3390/foods11121734.

Abstract

Broccoli (Brassica oleracea var. italica) stalks account for up to 35% of the broccoli harvest remains with the concomitant generation of unused waste that needs recovery to contribute to the sustainability of the system. However, due to its phytochemical composition, rich in bioactive (poly)phenols and glucosinolates, as well as other nutrients, the development of valorization alternatives as a source of functional ingredients must be considered. In this situation, the present work aims to develop/obtain a new ingredient rich in bioactive compounds from broccoli, stabilizing them and reducing their degradation to further guarantee a high bioaccessibility, which has also been studied. The phytochemical profile of lyophilized and thermally treated (low-temperature and descending gradient temperature treatments), together with the digested materials (simulated static in vitro digestion) were analysed by HPLC-PDA-ESI-MSn and UHPLC-3Q-MS/MS. Broccoli stalks and co-products were featured by containing phenolic compounds (mainly hydroxycinnamic acid derivatives and glycosylated flavonols) and glucosinolates. The highest content of organosulfur compounds corresponding to the cores of the broccoli stalks treated by applying a drying descendant temperature gradient (aliphatic 18.05 g/kg dw and indolic 1.61 g/kg dw, on average, while the breakdown products were more abundant in the bark ongoing low temperature drying 11.29 g/kg dw, on average). On the other hand, for phenolics, feruloylquinic, and sinapoylquinic acid derivatives of complete broccoli stalk and bark, were more abundant when applying low-temperature drying (14.48 and 28.22 g/kg dw, on average, respectively), while higher concentrations were found in the core treated with decreasing temperature gradients (9.99 and 26.26 g/kg dw, on average, respectively). When analysing the bioaccessibility of these compounds, it was found that low-temperature stabilization of the core samples provided the material with the highest content of bioactives including antioxidant phenolics (13.6 and 33.9 g/kg dw of feruloylquinic and sinapoylquinic acids, on average, respectively) and sulforaphane (4.1 g/kg dw, on average). These processing options enabled us to obtain a new product or ingredient rich in bioactive and bioaccessible compounds based on broccoli stalks with the potential for antioxidant and anti-inflammatory capacities of interest.

Keywords: HPLC-DAD-ESI-MSn; UHPLC-ESI-QqQ-MS/MS; bioaccessibility; broccoli stalks; glucosinolates; hydroxycinnamates; phytochemical fingerprinting; processing.