Stratification of Oligometastatic Prostate Cancer Patients by Liquid Biopsy: Clinical Insights from a Pilot Study

Biomedicines. 2022 Jun 4;10(6):1321. doi: 10.3390/biomedicines10061321.

Abstract

We propose a pilot, prospective, translational study with the aim of identifying possible molecular markers underlying metastatic prostate cancer (PC) evolution with the use of liquid biopsy. Twenty-eight castrate sensitive, oligometastatic PC patients undergoing bone and/or nodal stereotactic body radiotherapy (SBRT) were recruited. Peripheral blood samples were collected before the commencement of SBRT, then they were processed for circulating cell free DNA (cfDNA) extraction. Deep targeted sequencing was performed using a custom gene panel. The primary endpoint was to identify differences in the molecular contribution between the oligometastatic and polymetastatic evolution of PC to same-first oligo-recurrent disease presentation. Seventy-seven mutations were detected in 25/28 cfDNA samples: ATM in 14 (50%) cases, BRCA2 11 (39%), BRCA1 6 (21%), AR 13 (46%), ETV4, and ETV6 2 (7%). SBRT failure was associated with an increased risk of harboring the BRCA1 mutation (OR 10.5) (p = 0.043). The median cfDNA concentration was 24.02 ng/mL for ATM mutation carriers vs. 40.04 ng/mL for non-carriers (p = 0.039). Real-time molecular characterization of oligometastatic PC may allow for the identification of a true oligometastatic phenotype, with a stable disease over a long time being more likely to benefit from local, curative treatments or the achievement of long-term disease control. A prospective validation of our promising findings is desirable for a better understanding of the real impact of liquid biopsy in detecting tumor aggressiveness and clonal evolution.

Keywords: circulating cell free DNA; deep targeted sequencing; liquid biopsy; oligometastatic state; prostate cancer; stereotactic body radiotherapy.

Grants and funding

This research received no external funding.