Individual and Joint Effect of Alpha-Tocopherol and Hydroxytyrosol Acetate on the Oxidation of Sunflower Oil Submitted to Oxidative Conditions: A Study by Proton Nuclear Magnetic Resonance

Antioxidants (Basel). 2022 Jun 13;11(6):1156. doi: 10.3390/antiox11061156.

Abstract

This study tackles the individual and joint effect of alpha-tocopherol and hydroxytyrosol acetate on the oxidation of sunflower oil submitted to accelerated storage conditions at intermediate temperature, in order to deepen the understanding of antioxidant-prooxidant behaviour. This was accomplished by 1H Nuclear Magnetic Resonance. For this purpose, the evolution of the degradation of both the main components of the oil and the aforementioned added compounds was monitored by this technique throughout the storage time. Furthermore, the formation of a very large number of oxylipins and the evolution of their concentration up to a very advanced stage of oil oxidation, as well as the occurrence of lipolysis, were also simultaneously studied. The results obtained show very clearly and thoroughly that in the oxidation process of the oil enriched in binary mixtures, interactions occur between alpha-tocopherol and hydroxytyrosol acetate that notably reduce the antioxidant effect of the latter compound with the corresponding negative consequences that this entails. The methodology used here has proved to be very efficient to evaluate the antioxidant power of mixtures of compounds.

Keywords: accelerated storage conditions; alpha-tocopherol; antioxidant–prooxidant effects; binary mixtures and interactions; hydroxytyrosol acetate; linoleic acyl group degradation rate; oxylipins formation; polyunsaturated edible oil; proton nuclear magnetic resonance.