Foliar Application of Nano-Silicon Improves the Physiological and Biochemical Characteristics of 'Kalamata' Olive Subjected to Deficit Irrigation in a Semi-Arid Climate

Plants (Basel). 2022 Jun 13;11(12):1561. doi: 10.3390/plants11121561.

Abstract

In Egypt's arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive 'Kalamata' olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L-1 under different irrigation regimes (100, 90, and 80% irrigation water requirements 'IWR') during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that 'Kalamata' olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L-1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) 'Kalamata' olive trees under the Egyptian semi-arid conditions.

Keywords: abscisic acid; antioxidants; chloroplast degeneration; drought; malondialdehyde; nanoparticles; oxidative stress; photosynthesis.

Grants and funding

Authors declare no outside financial support.