Different photocurrent response of Cs4PbBr6 particles

J Chem Phys. 2022 Jun 21;156(23):234702. doi: 10.1063/5.0095106.

Abstract

Zero-dimensional (0D) all-inorganic cesium lead halide perovskites, particularly Cs4PbBr6, have been attracting wide attention due to their excellent optical properties and stability. The research also focuses on the origin of green emission from Cs4PbBr6, which has a bandgap located in the ultraviolet B (UVB) region. So far, both Cs4PbBr6 without visible emission and with green emission have been successfully prepared; however, the origin of green emission remains controversial. Photocurrent response is one of the effective approaches to explore how the photo-excited carriers influence the photo-physical properties of materials. In our study, Cs4PbBr6 particles without visible emission and with green emission were synthesized and their photocurrent response was investigated. The former showed a positive photocurrent response, while the latter showed a negative photocurrent response. The negative response was believed to be due to a built-in electric field constructed by the charged excitons in green-emissive Cs4PbBr6. From our calculations, numerous vacancies of Br are easier to appear in green-emissive Cs4PbBr6 lattices, which could combine the neutral excitons to form charged excitons. This work may contribute to the explanation of the origin of green emission of Cs4PbBr6 to some extent.