[Effects of freeze-thaw cycles on soil arthropod in the permafrost region of the Great Hing'an Mountains, Northeast China]

Ying Yong Sheng Tai Xue Bao. 2022 May;33(5):1405-1412. doi: 10.13287/j.1001-9332.202208.032.
[Article in Chinese]

Abstract

A laboratory experiment was conducted to investigate the impacts of freeze-thaw intensity (-5-5 ℃, -10-5 ℃) and frequency (1, 5, 10, 15 times) on the community structure of soil arthropod in permafrost zone, Great Hing'an Mountains with the 5 ℃ as control. A total of 4198 individuals of soil arthropod were extracted, belonging to 4 classes, 9 orders, 24 families and 33 genera. The results showed that the number of individuals and groups of soil arthropod decreased significantly in the treatment with high frost intensity (-10-5 ℃), while the individuals of some taxa increased in the treatment with low frost intensity (-5-5 ℃) after the first freeze-thaw incubation. The group number, Margalef index and Shannon index decreased with the increases of freeze-thaw cycling times in low frost intensity treatment, while did not change regularly in high frost intensity treatment. Larva stage was a kind of survival strategy for arthropod to resist low temperature stress, with Acari showing stronger cold tolerance. Different responses of soil arthropod to freeze-thaw cycles, synergistic effect among species and soil environment were factors affecting the structure of soil arthropod community. This study could provide scientific data and theoretical basis for the research and conservation of soil arthropod diversity in the permafrost zone in mid-high latitudes.

利用室内模拟冻融试验,以5 ℃未冻融为对照,研究冻融强度(-5~5 ℃、-10~5 ℃)和冻融频次(1、5、10、15次)对我国大兴安岭多年冻土区土壤节肢动物群落结构的影响。结果表明: 试验共分离到土壤节肢动物4198只,隶属于4纲9目24 科 33属;强冻融(-10~5 ℃)显著降低了土壤节肢动物的个体数和类群数,而轻冻融(-5~5 ℃)尤其是短期(1次冻融循环)处理则使某些类群的个体数增加;在轻冻融处理中类群数、Margalef指数和Shannon指数随着冻融频次的增加显著降低,但在强冻融处理中并未表现出规律性变化;越冬虫态是土壤节肢动物抵御低温胁迫的生存策略之一,同时蜱螨亚纲具有较好的耐寒性。土壤节肢动物对冻融作用的差异性响应、物种间的协同作用以及土壤环境均是影响其群落组成的主要因素。本研究将为我国中高纬多年冻土区土壤节肢动物多样性研究和保护提供数据支持和理论依据。.

Keywords: arthropod; community structure; freeze-thaw cycle; mid-high latitude; permafrost.

MeSH terms

  • Animals
  • Arthropods*
  • China
  • Freezing
  • Humans
  • Permafrost*
  • Soil / chemistry

Substances

  • Soil