Ethanol induces heat tolerance in plants by stimulating unfolded protein response

Plant Mol Biol. 2022 Sep;110(1-2):131-145. doi: 10.1007/s11103-022-01291-8. Epub 2022 Jun 22.

Abstract

Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.

Keywords: Chemical priming; Ethanol; Heat stress tolerance; Polyamine; Unfolded protein response.

MeSH terms

  • Arabidopsis* / metabolism
  • Endoplasmic Reticulum / metabolism
  • Endoplasmic Reticulum Stress
  • Ethanol / pharmacology
  • Putrescine / metabolism
  • Thermotolerance*
  • Unfolded Protein Response

Substances

  • Ethanol
  • Putrescine