Solid-Liquid State Transformable Magnetorheological Millirobot

ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30007-30020. doi: 10.1021/acsami.2c05251. Epub 2022 Jun 21.

Abstract

Magnetically actuated soft millirobots (magneto-robot) capable of accomplishing on-demand tasks in a remote-control manner using noninvasive magnetic fields are of great interest in biomedical settings. However, the solid magneto-robots are usually restricted by the limited deformability due to the predesigned shape, while the liquid magneto-robots are capable of in situ shape reconfiguration but limited by the low stiffness and geometric instability due to the fluidity. Herein, we propose a magneto-active solid-liquid state transformable millirobot (named MRF-Robot) made from a magnetorheological fluid (MRF). The MRF-Robot can transform freely and rapidly between the Newtonian fluid in the liquid state upon a weak magnetic field (∼0 mT) and the Bingham plasticity in the solid state upon a strong magnetic field (∼100 mT). The MRF-Robot in the liquid state can realize diverse behaviors of large deformation, smooth navigation, in situ splitting, merging, and gradient pulling actuated by a weak magnetic field with a high gradient. The MRF-Robot in the solid state is distinguished for the controllable locomotion with reconfigured shapes and versatile object manipulations (including pull, push, and rotate the objects) driven by a strong magnetic field with a high gradient. Moreover, the MRF-Robot could continuously maneuver to accomplish diverse tasks in the comprehensive scenes and achieve liquid-drug delivery, thrombus clearance, and fluid-flow blockage in the phantom vascular model under magnetic actuation.

Keywords: magnetic actuation; magnetic fields; magnetorheological fluid; millirobot; solid−liquid state transformation.