A Simple and Practical Method for Fluence Determination in Bench-Scale UV-LED Setups

Photochem Photobiol. 2023 Jan;99(1):19-28. doi: 10.1111/php.13668. Epub 2022 Jul 22.

Abstract

In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury-based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light-emitting diodes (UV-LEDs). This method was applied to a bench-scale UV-LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer. The results showed high accordance with spectroradiometer outputs with a linear regression equation y = 0.997x (x: model calculation, y: spectroradiometer output, r2 = 0.999, P < 0.001 for n = 20) in an experiment varying the distance between the measurement points and the UV-LEDs. Meanwhile, the proposed method and chemical actinometry exhibited 98% concordance. Furthermore, this method was applied to determine the fluence-response profiles of Pseudomonas aeruginosa, and the results demonstrated that the proposed method was appropriate at two different distances between the UV-LEDs and the solutions. To conclude, the proposed method can determine the fluence in a UV-LED bench-scale setup in a simple and practical way, which would potentially promote the research and development of water treatment using UV-LEDs.

MeSH terms

  • Disinfection / methods
  • Models, Theoretical
  • Pseudomonas aeruginosa
  • Ultraviolet Rays*
  • Water Purification* / methods