Convolutional neural network based CT scan classification method for COVID-19 test validation

Smart Health (Amst). 2022 Sep:25:100296. doi: 10.1016/j.smhl.2022.100296. Epub 2022 Jun 11.

Abstract

Given the novel corona virus discovered in Wuhan, China, in December 2019, due to the high false-negative rate of RT-PCR and the time-consuming to obtain the results, research has proved that computed tomography (CT) has become an auxiliary One of the essential means of diagnosis and treatment of new corona virus pneumonia. Since few COVID-19 CT datasets are currently available, it is proposed to use conditional generative adversarial networks to enhance data to obtain CT datasets with more samples to reduce the risk of over fitting. In addition, a BIN residual block-based method is proposed. The improved U-Net network is used for image segmentation and then combined with multi-layer perception for classification prediction. By comparing with network models such as AlexNet and GoogleNet, it is concluded that the proposed BUF-Net network model has the best performance, reaching an accuracy rate of 93%. Using Grad-CAM technology to visualize the system's output can more intuitively illustrate the critical role of CT images in diagnosing COVID-19. Applying deep learning using the proposed techniques suggested by the above study in medical imaging can help radiologists achieve more effective diagnoses that is the main objective of the research. On the basis of the foregoing, this study proposes to employ CGAN technology to augment the restricted data set, integrate the residual block into the U-Net network, and combine multi-layer perception in order to construct new network architecture for COVID-19 detection using CT images. -19. Given the scarcity of COVID-19 CT datasets, it is proposed that conditional generative adversarial networks be used to augment data in order to obtain CT datasets with more samples and therefore lower the danger of overfitting.

Keywords: CT image; Conditional generative adversarial network; Deep learning; Novel corona virus; U-net.