Direct Crystallization Resolution of Racemates Enhanced by Chiral Nanorods: Experimental, Statistical, and Quantum Mechanics/Molecular Dynamics Simulation Studies

ACS Omega. 2022 Jun 3;7(23):19828-19841. doi: 10.1021/acsomega.2c01596. eCollection 2022 Jun 14.

Abstract

Three chiral nanorods of C14-l-Thea, C14-l-Phe, and C14-d-Phe were first synthesized and utilized as heterogeneous nucleants to enhance the resolution of racemic Asp via direct crystallization. Through the statistical analysis from 320 batches of nucleation experiments, we found that the apparent appearance diversity of two enantiomeric crystals of Asp existed in 80 homogeneous experiments without chiral nanorods. However, in 240 heterogeneous experiments with 4.0 wt % chiral nanorods of solute mass added, the appearance of those nuclei with the same chirality as the nanorods was apparently promoted, and that with the opposite chirality was totally inhibited. Under a supersaturation level of 1.08, the maximum ee of the initial nuclei was as high as 23.51%. When the cooling rate was 0.025 K/min, the ee of the product was up to 76.85% with a yield of 14.41%. Furthermore, the simulation results from quantum mechanics (QM) and molecular dynamics (MD) revealed that the higher chiral recognition ability of C14-l-Thea compared to C14-l-Phe that originated from the interaction difference between C14-l-Thea and Asp enantiomers was larger than that between C14-l-Phe and Asp enantiomers. Moreover, the constructed nanorods exhibited good stability and recyclability.