One-Pot Synthesis of Hexamethylenetetramine Coupled with H2 Evolution from Methanol and Ammonia by a Pt/TiO2 Nanophotocatalyst

ACS Omega. 2022 Jun 6;7(23):19614-19621. doi: 10.1021/acsomega.2c01323. eCollection 2022 Jun 14.

Abstract

Utilization of solar energy for photocatalytic H2 evolution coupled with value-added chemical synthesis is a promising avenue to address energy and environmental crises. Here, we report the hexamethylenetetramine (HMT) synthesis and H2 evolution from methanol and ammonia in one pot using a nanophotocatalyst of the conventional semiconductor TiO2 (P25) loaded with Pt (Pt/P25). The addition of ammonia inhibits byproduct ethylene glycol formation, promotes H2 evolution, and obtains HMT with high selectivity (>99.0%). The Pt valence state is regulated by calcination and reduction treatment, indicating that Pt/P25 is a stable catalyst for the photocatalytic synthesis of HMT from methanol and ammonia. The optimized formation rates of H2 and HMT are 71.53 and 11.39 mmol gcat -1 h-1, respectively. This work provides a green and sustainable pathway for the photocatalytic HMT synthesis coupled with H2 evolution under mild conditions.