[Anti-obesity and lipid-lowering mechanism of Corydalis Bungeanae Herba: based on intestinal microflora and metabolomics]

Zhongguo Zhong Yao Za Zhi. 2022 Jun;47(11):3049-3058. doi: 10.19540/j.cnki.cjcmm.20211125.701.
[Article in Chinese]

Abstract

This study aims to explore anti-obesity and lipid-lowering mechanism of Corydalis Bungeanae Herba(CB) based on intestinal microflora and metabolomics. Specifically, high-fat high-sugar diet(HFHS, 10 weeks) was used to induce obesity in rats. Then the model rats were randomized into the model group, low-dose(0.18 g·kg~(-1)), medium-dose(0.9 g·kg~(-1)), and high-dose(1.8 g·kg~(-1)) CBH groups, and orlistat group(0.03 g·kg~(-1)), 12 in each group. Rats which received normal diet were used as control. The body weight and feed intake of rats were recorded every week. After 6 weeks of administration, rats were killed and gastric emptying and small intestinal propulsion were examined. Enzyme-linked immunosorbent assay(ELISA) was employed to analyze serum indexes, and liver and perirenal fat were collected for haematoxilin-eosin(HE) staining. Rat feces and serum were gathered for 16 S rDNA sequencing and metabolomics analysis and Spearman's correlation analysis was performed to explore the correlation between differential microflora and differential metabolites. The result showed that CBH extract decreased body weight, feed intake, and serum cholecystokinin(CCK), triglyceride(TG), and total cholesterol(TC), delayed gastric emptying, and reduced fat accumulation in liver and perirenal adiposity as compared with rats in the model group. In addition, Lachnospiraceae and Sutterellaceaecan significantly decreased in the model group, but CBH extract up-regulated their abundance. Moreover, the abundance of Prevotellaceae was significantly raised by HFHS, but CBH decreased it. Glutaric acid, glyceric acid, hippuric acid, malic acid, glyceric acid, oxoglutaric acid, fumaric acid/succinic acid, oxoglutaric acid/isocitric acid, D-glucuronic acid, cholic acid were the main deferentially expressed metabolites and significantly correlated with Sutterellaceae and Prevotellaceae. These key metabolites and microbiota mainly involved in tricarboxylic acid(TCA) cycle, glucose metabolism, amino acid metabolism, and energy metabolism. This study proved that CBH can efficiently improve body weight and blood lipids, reduce adipocyte volume, and positively regulate the intestinal microflora and serum metabolites, thereby achieving the anti-obesity and lipid-owering effect.

Keywords: Corydalis Bungeanae Herba; intestinal microflora; metabolomics; obesity.

MeSH terms

  • Animals
  • Body Weight
  • Corydalis*
  • Diet, High-Fat / adverse effects
  • Gastrointestinal Microbiome*
  • Lipids
  • Metabolomics
  • Obesity / drug therapy
  • Plant Extracts / pharmacology
  • Rats

Substances

  • Lipids
  • Plant Extracts