Development of Biodegradable Osteopromotive Citrate-Based Bone Putty

Small. 2022 Sep;18(36):e2203003. doi: 10.1002/smll.202203003. Epub 2022 Jun 19.

Abstract

The burden of bone fractures demands development of effective biomaterial solutions, while additional acute events such as noncompressible bleeding further motivate the search for multi-functional implants to avoid complications including osseous hemorrhage, infection, and nonunion. Bone wax has been widely used in orthopedic bleeding control due to its simplicity of use and conformation to irregular defects; however, its nondegradability results in impaired bone healing, risk of infection, and significant inflammatory responses. Herein, a class of intrinsically fluorescent, osteopromotive citrate-based polymer/hydroxyapatite (HA) composites (BPLP-Ser/HA) as a highly malleable press-fit putty is designed. BPLP-Ser/HA putty displays mechanics replicating early nonmineralized bone (initial moduli from ≈2-500 kPa), hydration induced mechanical strengthening in physiological conditions, tunable degradation rates (over 2 months), low swelling ratios (<10%), clotting and hemostatic sealing potential (resistant to blood pressure for >24 h) and significant adhesion to bone (≈350-550 kPa). Simultaneously, citrate's bioactive properties result in antimicrobial (≈100% and 55% inhibition of S. aureus and E. coli) and osteopromotive effects. Finally, BPLP-Ser/HA putty demonstrates in vivo regeneration in a critical-sized rat calvaria model equivalent to gold standard autograft. BPLP-Ser/HA putty represents a simple, off-the-shelf solution to the combined challenges of acute wound management and subsequent bone regeneration.

Keywords: bone putty; bone wax; citric acid; metabonegenesis; orthopedic biomaterials.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bone Regeneration
  • Bone Substitutes*
  • Bone and Bones
  • Citrates
  • Citric Acid*
  • Durapatite
  • Escherichia coli
  • Rats
  • Staphylococcus aureus

Substances

  • Bone Substitutes
  • Citrates
  • Citric Acid
  • Durapatite