β2-adrenergic receptor drives the metastasis and invasion of pancreatic ductal adenocarcinoma through activating Cdc42 signaling pathway

J Mol Histol. 2022 Aug;53(4):645-655. doi: 10.1007/s10735-022-10076-8. Epub 2022 Jun 18.

Abstract

Recent investigations indicate that β2-adrenergic receptor (β2-AR) signaling may facilitate the progression of various tumors, whose underlying mechanisms remain largely elusive. In the present study, we showed that β2-AR recruited Cdc42 in response to isoproterenol (ISO, a β-AR selective agonist) exposure in pancreatic ductal adenocarcinoma (PDAC) cells. The association of β2-AR and Cdc42 promoted the activation of Cdc42, as revealed by increased levels of Cdc42-GTP, and co-incubation with β2-AR antagonist abrogated ISO-induced activation of Cdc42. β2-AR-mediated Cdc42 activation further led to the phosphorylation of downstream PAK1, LIMK1 and Merlin. Furthermore, we showed that the activation of β2-AR/Cdc42 signaling facilitated the migration and invasion of PDAC cells. In addition, β2-AR and Cdc42 were overexpressed in PDAC specimens, compared with adjacent non-tumor tissues. High expression of β2-AR and Cdc42 were correlated with lymph node metastasis and TNM stage in PDAC patients. Finally, we showed that overexpression of β2-AR and Cdc42 were indicative of unfavorable prognosis in PDAC patients. Taken together, our findings suggested that β2-AR might facilitate Cdc42 signaling to drive the migration and invasion of PDAC cells, consequently resulting in the metastasis and dismal prognosis of PDAC. These studies highlight targeting β2-AR/Cdc42 signaling as a therapeutic strategy against PDAC.

Keywords: Cdc42; Invasion; Metastasis; pancreatic ductal adenocarcinoma; β2-AR.

MeSH terms

  • Carcinoma, Pancreatic Ductal* / genetics
  • Carcinoma, Pancreatic Ductal* / metabolism
  • Carcinoma, Pancreatic Ductal* / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lim Kinases / metabolism
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / metabolism
  • Pancreatic Neoplasms* / pathology
  • Receptors, Adrenergic, beta-2
  • Signal Transduction

Substances

  • Receptors, Adrenergic, beta-2
  • LIMK1 protein, human
  • Lim Kinases