Difference in calcium ion precipitation between free and immobilized Halovibrio mesolongii HMY2

J Environ Sci (China). 2022 Dec:122:184-200. doi: 10.1016/j.jes.2022.02.002. Epub 2022 Feb 14.

Abstract

Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods. However, the low sodium chloride (NaCl)-tolerance of bacteria limits applications to only water with low NaCl concentrations. Here, calcium ions in hypersaline wastewater (10% NaCl) were precipitated by free and immobilized Halovibrio mesolongii HMY2 bacteria and the differences between them were determined. The results show that calcium ions can be transformed into several types of calcium carbonate with a range of morphologies, abundant organic functional groups (C-H, C-O-C, C=O, etc), protein secondary structures (β-sheet, α-helix, 310 helix, and β-turn), P=O and S-H indicated by P2p and S2p, and more negative δ13CPDB (‰) values (-16.8‰ to -18.4‰). The optimal conditions for the immobilized bacteria were determined by doing experiments with six factors and five levels and using response surface method. Under the action of two groups of immobilized bacteria prepared under the optimal conditions, by the 10th day, Ca2+ ion precipitation ratios had increased to 79%-89% and 80%-88% with changes in magnesium ion cencentrations. Magnesium ions can significantly inhibit the calcium ion precipitation, and this inhibitory effect can be decreased under the action of immobilized bacteria. Minerals induced by immobilized bacteria always aggregated together, had higher contents of Mg, P, and S, lower stable carbon isotope values and less well-developed protein secondary structures. This study demonstrates an economic and eco-friendly method for recycling calcium ions in hypersaline wastewater, providing an easy step in the process of desalination.

Keywords: Biomineralization; Calcium ion removal; Halovibrio mesolongii; Hypersaline wastewater; Intracellular aragonite.

MeSH terms

  • Calcium Carbonate / chemistry
  • Calcium*
  • Halomonadaceae
  • Ions
  • Magnesium* / metabolism
  • Sodium Chloride
  • Wastewater

Substances

  • Ions
  • Waste Water
  • Sodium Chloride
  • Calcium Carbonate
  • Magnesium
  • Calcium

Supplementary concepts

  • Halovibrio mesolongii