Current trends and perspectives on bioaccessibility and bioavailability of food bioactive peptides: in vitro and ex vivo studies

J Sci Food Agric. 2022 Dec;102(15):6824-6834. doi: 10.1002/jsfa.12077. Epub 2022 Jul 11.

Abstract

The bioaccessibility and bioavailability of food-derived bioactive compounds are important issues when assessing their in vivo physiological health-promoting effects. Food components such as proteins and peptides are exposed to different proteases and peptidases during gastrointestinal digestion and absorption. Different in vitro approaches have therefore been developed to evaluate the bioaccessibility and stability of bioactive peptides. The static simulated gastrointestinal digestion model (SGD) was widely reported to assess the bioaccessibility of bioactive peptides. On the other hand, although the dynamic SGD model may better simulate human digestion, it has rarely been explored in bioaccessibility studies of food bioactive peptides due to its high cost and lack of standardization. For bioavailability studies, the Caco-2 cell monolayer model has been used extensively for the assessment of food bioactive peptides. In fact, very few reports using alternative methods for determining transepithelial transport of bioactive peptides have been employed. In this sense, ex vivo tissue-based models such as the Ussing chamber and the everted sac gut have been used. Current evidence supports the fact that using SGD with cell-based models for evaluating the bioaccessibility, absorption, and bioavailability of food-derived bioactive peptides, is the most commonly used approach. Nevertheless, SGD with ex vivo tissue-based models such as the everted sac, remains to be further explored because it seems to be the model that better mimics the physiological process - it is also fast and inexpensive, and several compounds may be tested simultaneously. In the present review, we discuss information available on the different in vitro approaches for the determination of bioaccessibility and bioavailability of food-derived bioactive peptides with special emphasis on ex vivo tissue-based models such as the everted sac and the Ussing chamber models. © 2022 Society of Chemical Industry.

Keywords: bioaccessibility; bioactive peptides; bioactivity; simulated gastrointestinal digestion.

Publication types

  • Review

MeSH terms

  • Biological Availability
  • Caco-2 Cells
  • Digestion*
  • Food*
  • Humans
  • Peptides

Substances

  • Peptides