Functionalized iron oxide nanoparticles: synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications

Heliyon. 2022 Jun 6;8(6):e09654. doi: 10.1016/j.heliyon.2022.e09654. eCollection 2022 Jun.

Abstract

Dual-functional iron oxide nanoparticles (IONPs), displaying self-heating and antibacterial effects are highly desired for biomedical application. This study involved the synthesis of functionalized IONPs coated with 3-aminopropyltriethoxysilane and polyethylene glycol via ultrasonic-assisted co-precipitation technique. The synthesized IONPs were then characterized by using Fourier-transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, scanning electron microscopy, zeta potential, vibrating sample magnetometer and thermogravimetric analysis techniques. In addition, the effect of the synthesized IONPs on bacterial growth (S. aureus and E. coli) was studied. The influence of magnetic field power, as well as the viscous carriers on the heating efficiency of the synthesized IONPs was investigated. The specific absorption rate values increased as the power increased and decreased with the increase in the carrier viscosity. These characteristics render the synthesized iron oxide nanoparticles synthesized in the present study suitable for biomedical application as hyperthermic agents.

Keywords: Biomedical applications; Functionalized iron oxide nanoparticles; Hyperthermia; Specific absorption rate.