Chemoenzymatic Synthesis of Asymmetrically Branched Human Milk Oligosaccharide Lacto- N-Hexaose

Front Chem. 2022 May 31:10:905105. doi: 10.3389/fchem.2022.905105. eCollection 2022.

Abstract

We herein reported the first chemoenzymatic synthesis of lacto-N-hexaose (LNH) by combining chemical carbohydrate synthesis with a selectively enzymatic glycosylation strategy. A tetrasaccharide core structure GlcNH2β1→3 (GlcNAcβ1→6) Galβ1→4Glc, a key precursor for subsequent enzymatic glycan extension toward asymmetrically branched human milk oligosaccharides, was synthesized in this work. When the order of galactosyltransferase-catalyzed reactions was appropriately arranged, the β1,4-galactosyl and β1,3-galactosyl moieties could be sequentially assembled on the C6-arm and C3-arm of the tetrasaccharide, respectively, to achieve an efficient LNH synthesis. Lacto-N-neotetraose (LNnH), another common human milk oligosaccharide, was also synthesized en route to the target LNH.

Keywords: enzymatic synthesis; fucosylation; human milk oligosaccharides; lacto-N-hexaose; selective glycosylation.