DnaK response to expression of protein mutants is dependent on translation rate and stability

Commun Biol. 2022 Jun 16;5(1):597. doi: 10.1038/s42003-022-03542-2.

Abstract

Chaperones play a central part in the quality control system in cells by clearing misfolded and aggregated proteins. The chaperone DnaK acts as a sensor for molecular stress by recognising short hydrophobic stretches of misfolded proteins. As the level of unfolded protein is a function of protein stability, we hypothesised that the level of DnaK response upon overexpression of recombinant proteins would be correlated to stability. Using a set of mutants of the λ-repressor with varying thermal stabilities and a fluorescent reporter system, the effect of stability on DnaK response and protein abundance was investigated. Our results demonstrate that the initial DnaK response is largely dependent on protein synthesis rate but as the recombinantly expressed protein accumulates and homeostasis is approached the response correlates strongly with stability. Furthermore, we observe a large degree of cell-cell variation in protein abundance and DnaK response in more stable proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • HSP70 Heat-Shock Proteins / genetics
  • HSP70 Heat-Shock Proteins / metabolism
  • Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / metabolism
  • Molecular Chaperones / genetics
  • Molecular Chaperones / metabolism

Substances

  • Escherichia coli Proteins
  • HSP70 Heat-Shock Proteins
  • Heat-Shock Proteins
  • Molecular Chaperones
  • dnaK protein, E coli