One-pot platform for rapid detecting virus utilizing recombinase polymerase amplification and CRISPR/Cas12a

Appl Microbiol Biotechnol. 2022 Jun;106(12):4607-4616. doi: 10.1007/s00253-022-12015-9. Epub 2022 Jun 16.

Abstract

The livestock industry has been deeply affected by African swine fever virus (ASFV) and Capripoxvirus (CaPV), which caused an enormous economic damage. It is emergent to develop a reliable detection method. Here, we developed a rapid, ultra-sensitive, and one-pot DNA detection method combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a for ASFV and CaPV, named one-pot-RPA-Cas12a (OpRCas) platform. It had the virtue of both RPA and CRISPR/Cas12a, such as high amplification efficiency, constant temperature reaction, and strict target selectivity, which made diagnosis simplified, accurate and easy to be operated without expensive equipment. Meanwhile, the reagents of RPA and CRISPR/Cas12a were added to the lid and bottom of tube in one go, which overcame the incompatibility of two reactions and aerosol contamination. To save cost, we only need a quarter of the amount of regular RPA per reaction which is enough to achieve clinical diagnosis. The OpRCas platform was 10 to 100 times more sensitive than qPCR; the limit of detection (LOD) was as low as 1.2 × 10-6 ng/µL (3.07 copies/µL by ddPCR) of ASFV and 7.7 × 10-5 ng/µL (1.02 copies/µL by ddPCR) of CaPV with the portable fluorometer in 40 min. In addition, the OpRCas platform combined with the lateral flow assay (LFA) strip to suit for point-of-care (POC) testing. It showed 93.3% consistency with qPCR for clinical sample analysis. Results prove that OpRCas platform is an easy-handling, ultra-sensitive, and rapid to achieve ASFV and CaPV POC testing. KEY POINTS: • The platform realizes one-pot reaction of RPA and Cas12a. • Sensitivity is 100 times more than qPCR. • Three output modes are suitable to be used to quantitative test or POC testing.

Keywords: African swine fever virus (ASFV); CRISPR/Cas12a; Capripoxvirus (CaPV); Lateral flow assay (LFA); Recombinase polymerase amplification (RPA).

MeSH terms

  • African Swine Fever Virus* / genetics
  • African Swine Fever Virus* / metabolism
  • Animals
  • CRISPR-Cas Systems
  • Nucleic Acid Amplification Techniques / methods
  • Nucleotidyltransferases
  • Real-Time Polymerase Chain Reaction
  • Recombinases* / genetics
  • Sensitivity and Specificity
  • Swine

Substances

  • Recombinases
  • Nucleotidyltransferases