Full-dimensional quantum mechanical calculations for the tunneling behavior of HOCO dissociation to H + CO2

Phys Chem Chem Phys. 2022 Jun 29;24(25):15321-15329. doi: 10.1039/d1cp04269f.

Abstract

The tunneling behavior during HOCO dissociation to H + CO2 was investigated by full-dimensional quantum mechanical calculations based on an accurate global potential energy surface. The tunneling lifetimes for the low-lying 1500 vibrational states were calculated using the low-storage filter diagonalization method after a 1 million-step Chebyshev propagation. In the calculated energy range, the lifetimes of different vibrational states with similar energy are found to differ by 3-4 orders of magnitude, and the lower limit for these tunneling lifetimes is consistent with the experimental results reported by Continetti et al. For the given vibrational progressions, the lifetime of the vibrational states decreases with the increasing energy level, which is consistent with the results of 1D simulation calculations reported by Bowman, but the declining curve obviously fluctuates, and the declining slope is significantly different from that obtained by 1D simulation. Due to a difference in the effective barrier width, the mode-specific behavior of the tunneling effect is manifested in that the O-C-O' and H-O-C bend modes lead to the largest enhancement and an inhibitory effect on the tunneling process, respectively.