Metal-Organic Frameworks for Ion Conduction

Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202206512. doi: 10.1002/anie.202206512. Epub 2022 Jul 25.

Abstract

Solid-state ionic conductors are compelling alternatives to liquid electrolytes in clean energy-harvesting and -storage technologies. The development of novel ionic conducting materials is one of the most critical challenges for next-generation energy technologies. Several advancements in design strategies, synthetic approaches, conducting properties, and underlying mechanisms for ionic conducting metal-organic frameworks (MOFs) have been made over the past five years; however, despite the recent, considerable expansion of related research fields, there remains a lack of systematic overviews. Here, an extensive introduction to ionic conducting performance for MOFs with different design strategies is provided, focusing primarily on ion mobility with the aid of hydrogen-bonding networks or solvated ionic charge. Furthermore, current theories on ion conducting mechanisms in different regimes are comprehensively summarized to provide an understanding of the underlying working principles in complex, realistic systems. Finally, challenges and future research directions at the forefront of ionic conducting MOF technologies are outlined.

Keywords: Coordination Polymers; Hydroxide Ion Conduction; Ion Conduction; Metal-Organic Frameworks; Proton Conduction.

Publication types

  • Review