Development of a nanocopper-decorated laser-scribed sensor for organophosphorus pesticide monitoring in aqueous samples

Mikrochim Acta. 2022 Jun 13;189(7):254. doi: 10.1007/s00604-022-05355-w.

Abstract

Organophosphorus pesticides are widely used in industrial agriculture and have been associated with water pollution and negative impacts on local ecosystems and communities. There is a need for testing technologies to detect the presence of pesticide residues in water sources, especially in developing countries where access to standard laboratory methods is cost prohibitive. Herein, we outline the development of a facile electrochemical sensor for amperometric determination of organophosphorus pesticides in environmental water samples. A three-electrode system was fabricated via UV laser-inscribing on a polyimide film. The working electrode was functionalized with copper nanoparticles with affinity toward organophosphate compounds. The sensor showed a limit of detection (LOD) of 3.42 ± 1.69 µM for glyphosate, 7.28 ± 1.20 µM for glufosinate, and 17.78 ± 7.68 µM for aminomethylphosphonic acid (AMPA). Sensitivity was highest for glyphosate (145.52 ± 36.73 nA⋅µM-1⋅cm-2) followed by glufosinate (56.98 ± 10.87 nA⋅µM-1⋅cm-2), and AMPA (30.92 ± 8.51 nA⋅µM-1⋅cm-2). The response of the sensor is not significantly affected by the presence of several ions and organic molecules commonly present in natural water samples. The developed sensor shows promising potential for facilitating environmental monitoring of organophosphorus pesticide residues, which is a current need in several parts of the world.

Keywords: Amperometry; Copper nanoparticles; Environmental monitoring; Glyphosate; LIG; Organophosphorus pesticides; Sensor; Turbostratic graphene.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ecosystem
  • Lasers
  • Organophosphorus Compounds / analysis
  • Pesticide Residues* / analysis
  • Pesticides* / analysis
  • Water / chemistry

Substances

  • Organophosphorus Compounds
  • Pesticide Residues
  • Pesticides
  • Water