Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable catalyst for hydrogen evolution reaction

J Colloid Interface Sci. 2022 Oct 15:624:704-712. doi: 10.1016/j.jcis.2022.06.018. Epub 2022 Jun 7.

Abstract

Platinum-based catalysts are regarded as the Holy Grail of hydrogen evolution reaction (HER). As a benchmark catalyst for HER, the commercial Pt/C catalyst has low Pt utilization efficiency and high cost, which hinders its commercialization. Atomic clusters-based catalysts show high efficiency of atom utilization and high performance toward electrocatalysis. Herein, an environmentally friendly preparation strategy is proposed to construct Pt atomic clusters on the polyoxometalates-carbon black (Pt-POMs-CB) support. Density functional theory (DFT) calculations reveal that the Pt clusters can be stably anchored on the surface with the driving force arising from the charge transfer from Pt atoms to O atoms of the POMs. Benefiting from metal-support interaction, Pt atomic clusters embedded in silicotungstic acid-carbon black (Pt-STA-CB) exhibit excellent HER activity with an overpotential of 33.8 mV at 10 mA cm-2, and high mass activity is 1.62 A mg-1Pt at 33.8 mV, which is 5.4 times that of the commercial Pt/C. In addition, the catalyst displays high stability of 800 h at current density of 500 mA cm-2. It provides a platform for facile and low-cost preparation of stable Pt-based catalysts, which is crucial for their large-scale production and practical application in the industry.

Keywords: Hydrogen evolution reaction; Large-scale production; Metal-support interaction; Pt atomic clusters.