The impact of ion chamber components on kB,Qfor reference dosimetry in MRgRT

Phys Med Biol. 2022 Jul 4;67(14). doi: 10.1088/1361-6560/ac77d0.

Abstract

For reference dosimetry in MRgRT,kB,Qis used to correct for the impact of the magnetic field on the chamber calibration coefficient. It has been demonstrated that for accurate simulation ofkB,Qthe dead volume (DV) must be considered. This work goes one step further by analysing the contribution of secondary electrons generated in the various chamber components tokB,Q. The Farmer-type chamber PTW 30013 geometry was modelled for two different DVs. Monte Carlo simulations were performed for a60Co source and a 7 MV MRI-linac and the model was validated against measurements. Both parallel (α = 0° or 180°) and perpendicular (α = 90° or 270°) orientations of the chamber and the magnetic (B) field were considered, and severalB-field strengths between 0 T and 1.5 T. To study the dose contribution to the reduced volume (RV = cavity - DV) from the secondary electrons produced in certain components of the chamber the labelling of the particles was implemented in the PENELOPE user code PENMAIN. A separate model with each solid component of the chamber modelled as liquid water was used to investigate the impact of material choice onkB,Q. Results show that simulatedkB,Qvalues agree better with the measuredkB,Qwhen the DV is considered. It is demonstrated that small components of the chamber impactkB,Qconsiderably, since the contribution to the RV-dose from the bodies closer to the RV is higher than withoutB. Moreover, it is seen that the impact to the dose in the RV is reduced when the material of each component is modelled as liquid water. Therefore, chamber design and, to a lesser extent, choice of material affectkB,Q, and an accurate geometrical model of the chamber components and its further validation are important for correct calculations ofkB,Q.

Keywords: MRgRT; absorbed dose; dosimetry; ionization chamber; k B,Q; magnetic field.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • Monte Carlo Method
  • Particle Accelerators*
  • Photons
  • Radiometry*
  • Water

Substances

  • Water