A Source Localization Method Using Complex Variational Mode Decomposition

Sensors (Basel). 2022 May 26;22(11):4029. doi: 10.3390/s22114029.

Abstract

Source localization with a passive sensors array is a common topic in various areas. Among the popular source localization algorithms, the compressive sensing (CS)-based method has recently drawn considerable interest because it is a high-resolution method, robust with coherent sources and few snapshots, and applicable for mixed near-field and far-field source localization. However, the CS-based methods rely on the dense grid to ensure the required estimation precision, which is time-consuming and impractical. This paper applies the complex variational mode decomposition (CVMD) to source localization. Specifically, the signal model of the source localization problem is similar to the time-domain frequency-modulated signal model. Motivated by this, we extend CVMD, initially designed for nonstationary time-domain signal analysis, to array signal processing. The decomposition results of the array measurements can correspond to the potential sources at different locations. Then, the sources' direction and range can be estimated by model fitting with the decomposed subsignals. The simulation results show that the proposed CVMD-based method can locate the pure far-field, pure near-field, mixed far-field, and near-field sources. Notably, it can yield high-resolution localization for the coherent sources with one single snapshot with low computing time.

Keywords: complex variational mode decomposition; compressive sensing; far-field source; near-field source; source localization.

Grants and funding

This research received no external funding.