Comparative Plasticity Responses of Stable Isotopes of Carbon (δ13C) and Nitrogen (δ15N), Ion Homeostasis and Yield Attributes in Barley Exposed to Saline Environment

Plants (Basel). 2022 Jun 5;11(11):1516. doi: 10.3390/plants11111516.

Abstract

Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δ13C) and nitrogen isotope composition (δ15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m-1). The number of spikes m-2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha-1), while the lowest yield was obtained in 59/3A (2.31 t ha-1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative δ13C values (-27.10‱, -26.49‱, -26.45‱), while the lowest values were obtained in N1-29 (-21.63‱) under salt stress. The δ15N was increased (4.93‱ and 4.59‱) after 7 and 14 dS m-1 as compared to control (3.12‱). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.

Keywords: Hordeum vulgare; ion homeostasis; isotope ecology; saline water stress; stable isotope composition of carbon and nitrogen; yield stability.