Antidiabetic Wound Dressing Materials Based on Cellulosic Fabrics Loaded with Zinc Oxide Nanoparticles Synthesized by Solid-State Method

Polymers (Basel). 2022 May 27;14(11):2168. doi: 10.3390/polym14112168.

Abstract

The current study aims for the use of the solid-state technique as an efficient way for the preparation of zinc oxide nanoparticles (ZnONPs) as an antimicrobial agent with high concentration using sodium alginate as stabilizing agent. ZnONPs were prepared with three different concentrations: ZnONPs-1, ZnONPs-2, and ZnONPs-3 (attributed to the utilized different concentrations of zinc acetate, 1.5, 3 and 4.5 g, respectively). The as-fabricated ZnONPs (ZnONPs-1, ZnONPs-2, and ZnONPs-3) were used for the treatment of cellulosic fabrics as dressing materials for the diabetic wounds. DLS findings illustrated that the as-prepared ZnONPs exhibited average particle size equal to 78, 117, and 144 nm, respectively. The data also showed that all the formulated ZnONPs were formed with good stability (above -30 mv). The topographical images of cellulosic fabrics loaded with ZnONPs that were obtained by SEM confirmed the deposition of nanoparticles onto the surface of cellulosic fabrics with no noticeable agglomeration. The findings also outlined that the treated cellulosic fabrics dressings were proven to have enhanced bactericidal characteristics against the pathogenic microorganisms. The finding of wound contraction for the diabetic rats was measured after 21 days and reached 93.5% after treating the diabetic wound with cotton fabrics containing ZnONPs-2. Ultimately, the generated wound dressing (cellulosic fabrics loaded with ZnONPs) offers considerable promise for treating the wound infections and might be examined as a viable alternative to antibiotics and topical wound treatments.

Keywords: antidiabetic; cellulosic fabrics; wound dressing; zinc oxide nanoparticles.

Grants and funding

This research was funded by the Deanship of Scientific Research at King Faisal University (Saudi Arabia) under grant No. GRANT 578.