Specular Microscopy of Human Corneas Stored in an Active Storage Machine

J Clin Med. 2022 May 26;11(11):3000. doi: 10.3390/jcm11113000.

Abstract

Purpose: Unlike corneas stored in cold storage (CS) which remain transparent and thin, corneas stored in organoculture (OC) cannot be assessed by specular microscopy (SM), because edema and posterior folds occur during storage and prevent from specular reflection. We previously developed an active storage machine (ASM) which restores the intraocular pressure while renewing the storage medium, thus preventing major stromal edema. Its transparent windows allow multimodal corneal imaging in a closed system.

Aim: to present SM of corneas stored in this ASM.

Methods: Ancillary study of two preclinical studies on corneas stored for one and three months in the ASM. A prototype non-contact SM was developed (CMOS camera, ×10 objective, collimated LED source, micrometric stage). Five non-overlapping fields (935 × 748 μm) were acquired in exactly the same areas at regular intervals. Image quality was graded according to defined categories (American Cornea Donor Study). The endothelial cell density (ECD) was measured with a center method. Finally, SMECD was also compared to Hoechst-stained cell nuclei count (HoechstECD).

Results: The 62 corneas remained thin during storage, allowing SM at all time points without corneal deconditioning. Image quality varied depending on donors and days of control but, overall, in the 1100 images, we observed 55% of excellent and 30% of good quality images. SMECD did not differ from HoechstECD (p = 0.084).

Conclusions: The ASM combines the advantages of CS (closed system) and OC (long-term storage). Specular microscopy is possible at any time in the ASM with a large field of view, making endothelial controls easy and safe.

Keywords: active storage machine; cornea; endothelial cell density; endothelium; eye bank; image analysis; long-term storage; specular microscopy; viable endothelial cell density.