The Influence of Ce, La, and SiC Particles Addition on the Formability of an Al-Si-Cu-Mg-Fe SiCp-MMC

Materials (Basel). 2022 May 26;15(11):3789. doi: 10.3390/ma15113789.

Abstract

Road transport and the associated fuel consumption plays a primary role in emissions. Weight reduction is critical to reaching the targeted reduction of 34% in 2025. Weight reduction in moving parts, such as pistons and brake disc rotors, provide a high-impact route to achieve this goal. The current study aims to investigate the formability of Al-Si alloys reinforced with different fractions and different sizes of SiCp to create an efficient and lightweight Al-MMC brake disk. Lanthanum (La) and cerium (Ce) were added to strengthen the aluminium matrix alloy and to improve the capability of the Al-MMC brake discs to withstand elevated temperature conditions, such as more extended braking periods. La and Ce formed intermetallic phases that further strengthened the composite. The analysis showed the processability and thermal stability of the different material's combinations: increased particle sizes and broader size range mixture supported the formation of the SiCp particle interactions, acting as an internal scaffolding. In conclusion, the additions of Ce and La strengthened the softer matrix regions and resulted in a doubled compression peak strength of the material without affecting the formability, as demonstrated by the processing maps.

Keywords: aluminium; brake disk; forming; metal matrix composite; processing map; thermal stability.