Biodegradation and Metabolic Pathway of 17β-Estradiol by Rhodococcus sp. ED55

Int J Mol Sci. 2022 May 31;23(11):6181. doi: 10.3390/ijms23116181.

Abstract

Endocrine disrupting compounds (EDCs) in the environment are considered a motif of concern, due to the widespread occurrence and potential adverse ecological and human health effects. The natural estrogen, 17β-estradiol (E2), is frequently detected in receiving water bodies after not being efficiently removed in conventional wastewater treatment plants (WWTPs), promoting a negative impact for both the aquatic ecosystem and human health. In this study, the biodegradation of E2 by Rhodococcus sp. ED55, a bacterial strain isolated from sediments of a discharge point of WWTP in Coloane, Macau, was investigated. Rhodococcus sp. ED55 was able to completely degrade 5 mg/L of E2 in 4 h in a synthetic medium. A similar degradation pattern was observed when the bacterial strain was used in wastewater collected from a WWTP, where a significant improvement in the degradation of the compound occurred. The detection and identification of 17 metabolites was achieved by means of UPLC/ESI/HRMS, which proposed a degradation pathway of E2. The acute test with luminescent marine bacterium Aliivibrio fischeri revealed the elimination of the toxicity of the treated effluent and the standardized yeast estrogenic (S-YES) assay with the recombinant strain of Saccharomyces cerevisiae revealed a decrease in the estrogenic activity of wastewater samples after biodegradation.

Keywords: 17β-estradiol; Rhodococcus sp. ED55; bioaugmentation; endocrine disrupting chemicals; wastewater.

MeSH terms

  • Ecosystem
  • Endocrine Disruptors* / analysis
  • Estradiol / metabolism
  • Estrogens / metabolism
  • Humans
  • Metabolic Networks and Pathways
  • Rhodococcus* / metabolism
  • Waste Disposal, Fluid
  • Wastewater
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • Endocrine Disruptors
  • Estrogens
  • Waste Water
  • Water Pollutants, Chemical
  • Estradiol