Field Evaluation of an Automated Pollen Sensor

Int J Environ Res Public Health. 2022 May 25;19(11):6444. doi: 10.3390/ijerph19116444.

Abstract

Background: Seasonal pollen is a common cause of allergic respiratory disease. In the United States, pollen monitoring occurs via manual counting, a method which is both labor-intensive and has a considerable time delay. In this paper, we report the field-testing results of a new, automated, real-time pollen imaging sensor in Atlanta, GA. Methods: We first compared the pollen concentrations measured by an automated real-time pollen sensor (APS-300, Pollen Sense LLC) collocated with a Rotorod M40 sampler in 2020 at an allergy clinic in northwest Atlanta. An internal consistency assessment was then conducted with two collocated APS-300 sensors in downtown Atlanta during the 2021 pollen season. We also investigated the spatial heterogeneity of pollen concentrations using the APS-300 measurements. Results: Overall, the daily pollen concentrations reported by the APS-300 and the Rotorod M40 sampler with manual counting were strongly correlated (r = 0.85) during the peak pollen season. The APS-300 reported fewer tree pollen taxa, resulting in a slight underestimation of total pollen counts. Both the APS-300 and Rotorod M40 reported Quercus (Oak) and Pinus (Pine) as dominant pollen taxa during the peak tree pollen season. Pollen concentrations reported by APS-300 in the summer and fall were less accurate. The daily total and speciated pollen concentrations reported by two collocated APS-300 sensors were highly correlated (r = 0.93-0.99). Pollen concentrations showed substantial spatial and temporal heterogeneity in terms of peak levels at three locations in Atlanta. Conclusions: The APS-300 sensor was able to provide internally consistent, real-time pollen concentrations that are strongly correlated with the current gold-standard measurements during the peak pollen season. When compared with manual counting approaches, the fully automated sensor has the significant advantage of being mobile with the ability to provide real-time pollen data. However, the sensor's weed and grass pollen identification algorithms require further improvement.

Keywords: automation; data analysis; pollen monitoring; real-time monitoring; sensors.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Allergens
  • Automation
  • Pollen*
  • Quercus*
  • Seasons

Substances

  • Allergens