Zbtb46 Controls Dendritic Cell Activation by Reprogramming Epigenetic Regulation of cd80/86 and cd40 Costimulatory Signals in a Zebrafish Model

J Immunol. 2022 Jun 15;208(12):2686-2701. doi: 10.4049/jimmunol.2100952. Epub 2022 Jun 8.

Abstract

The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • B7-1 Antigen / genetics
  • B7-1 Antigen / metabolism
  • CD40 Antigens
  • CD8-Positive T-Lymphocytes*
  • Cell Adhesion Molecules / metabolism
  • Dendritic Cells
  • Epigenesis, Genetic
  • Lymphocyte Activation
  • Zebrafish*

Substances

  • B7-1 Antigen
  • CD40 Antigens
  • Cell Adhesion Molecules