Ambient Stable All Inorganic CsCu2I3 Artificial Synapses for Neurocomputing

Nano Lett. 2022 Jul 27;22(14):6010-6017. doi: 10.1021/acs.nanolett.2c01272. Epub 2022 Jun 8.

Abstract

In resistive switching memories or artificial synaptic devices, halide perovskites have attracted attention for their unusual features such as rapid ion migration, adjustable composition, and facile synthesis. Herein, the environmentally friendly and highly air stable CsCu2I3 perovskite films are used as the active layer in the Au/CsCu2I3/ITO/glass artificial synapses. The device shows variable synaptic plasticities such as long-term and short-term synaptic plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity by combining potentiation and depression along the formation of conductive filaments. The performances of the devices are maintained for 160 days under ambient conditions. Additionally, the accuracy evaluation of the CsCu2I3-based artificial synapses performs exceptionally well with the MNIST and Fashion MNIST data sets, demonstrating high learning accuracy in deep neural networks. Using the novel B-site engineered halide perovskite material with extreme air stability, this study paves the way for artificial synaptic devices for next-generation in-memory hardware.

Keywords: air stable; artificial synapse; inorganic halide perovskite; lead-free; memristor; neuromorphic computing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Neural Networks, Computer
  • Neuronal Plasticity*
  • Synapses*